190 research outputs found

    Adaptive correction of turbulent distortions by MEMS flexible mirror

    Get PDF
    In astronomy, there is a very important task - distortion correction. The problem is solved by an adaptive mirror with a variable geometry which can be created based on MEMS. The annex to the adaptive optics, MEMS is membrane mirror of small dimensions, but with a large number of controls. The action of external forces on the controls adjusts the mirror surface shape correction for distortion compensation. Force directed at one control element slightly affects the shape of the mirror surface in the areas where the remaining elements. It is shown that for each control of the mirror can be affected, which is proportional to the calculated value of the sensor by measuring the wavefront coming to the input aperture of the system

    Investigation of the Chaotic Dynamics of an Electron Beam with a Virtual Cathode in an External Magnetic Field

    Get PDF
    The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring inan electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beamand interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased,the dynamics of an electron beam with a virtual cathode becomes more complicated due to the formation andinteraction of spatio-temporal longitudinal and transverse structures in the interaction region of a vircator. The optimum efficiency of the interaction of an electron beam with the electromagnetic field of the vircator isachieved at a comparatively weak external magnetic field and is determined by the fundamentally two-dimensional nature of the motion of the beam electrons near the virtual cathode.Comment: 12 pages, 8 figure

    Extended search for supernovalike neutrinos in NOvA coincident with LIGO/Virgo detections

    Get PDF
    A search is performed for supernovalike neutrino interactions coincident with 76 gravitational wave events detected by the LIGO/Virgo Collaboration. For 40 of these events, full readout of the time around the gravitational wave is available from the NOvA Far Detector. For these events, we set limits on the fluence of the sum of all neutrino flavors of F29(50) kpc at 90% C.L. Weaker limits are set for other gravitational wave events with partial Far Detector data and/or Near Detector data

    Measurement of the Neutrino Mixing Angle theta(23) in NOvA

    Get PDF
    This Letter reports new results on muon neutrino disappearance from NOvA, using a 14 kton detector equivalent exposure of 6.05 x 10(20) protons on target from the NuMI beam at the Fermi National Accelerator Laboratory. The measurement probes the muon-tau symmetry hypothesis that requires maximal theta(23) mixing (theta(23) = pi/4). Assuming the normal mass hierarchy, we find Delta m(32)(2) = (2.67 +/- 0.11) x 10(-3) eV(2) and sin(2) theta(23)at the two statistically degenerate values 0.404(-0.022)(+0.030) and 0.624(-0.030)(+0.022), both at the 68% confidence level. Our data disfavor the maximal mixing scenario with 2.6 sigma significance

    Constraints on Oscillation Parameters from nu(e) Appearance and nu(mu) Disappearance in NOvA

    Get PDF
    Results are reported from an improved measurement of nu(mu) -\u3e nu(e) transitions by the NOvA experiment. Using an exposure equivalent to 6.05 x 10(20) protons on target, 33 nu(e) candidates are observed with a background of 8.2 +/- 0.8 (syst.). Combined with the latest NOvA nu(mu) disappearance data and external constraints from reactor experiments on sin(2) 2 theta(13), the hypothesis of inverted mass hierarchy with theta(23) in the lower octant is disfavored at greater than 93% C.L. for all values of delta(CP)

    Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

    Get PDF
    A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality Q2>1Q^{2}>1 (GeV/cc)2^2, invariant mass of the hadronic system W>5W > 5 GeV/c2c^2, Bjorken scaling variable in the range 0.003<x<0.40.003 < x < 0.4, fraction of the virtual photon energy carried by the hadron in the range 0.2<z<0.80.2 < z < 0.8, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/c)2<PhT2<3c)^2 < P_{\rm{hT}}^{2} < 3 (GeV/cc)2^2. The multiplicities are presented as a function of PhT2P_{\rm{hT}}^{2} in three-dimensional bins of xx, Q2Q^2, zz and compared to previous semi-inclusive measurements. We explore the small-PhT2P_{\rm{hT}}^{2} region, i.e. PhT2<1P_{\rm{hT}}^{2} < 1 (GeV/cc)2^2, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger PhT2P_{\rm{hT}}^{2}, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small PhT2P_{\rm{hT}}^{2} to study the dependence of the average transverse momentum PhT2\langle P_{\rm{hT}}^{2}\rangle on xx, Q2Q^2 and zz. The power-law behaviour of the multiplicities at large PhT2P_{\rm{hT}}^{2} is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.Comment: 28 pages, 20 figure

    Search for active-sterile neutrino mixing using neutral-current interactions in NOvA

    Get PDF
    We report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810 km between the NOvA detectors. Analyzing a 14-kton detector equivalent exposure of 6.05 x 10(20) protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 +/- 9.7(stat) +/- 9.4(syst) events predicted assuming mixing only occurs between active neutrino species. No evidence for upsilon(mu) -\u3e upsilon(mu) transitions is found. Interpreting these results within a 3 + 1 model, we place constraints on the mixing angles theta(24) \u3c 20.8 degrees and theta(34) \u3c 31.2 degrees at the 90% C.L. for 0.05 eV(2) \u3c= Delta m(41)(2) \u3c= 0.5 eV(2), the range of mass splittings that produce no significant oscillations over the Near Detector baseline
    corecore